Two examples of spectral-genus-three tori [2,3,1] constructed by bending a straight spectral-genus-two cylinder [3].
A straight cylinder of spectral genus 2, to be bent into a rattlesnake torus of spectral genus 3.Rattlesnake torus.A straight cylinder of spectral genus 2, to be bent into a rattlesnake torus of spectral genus 3.Rattlesnake torus.
References
J. Bolton, F. Pedit, and L. Woodward, Minimal surfaces and the affine Toda field model, J. Reine Angew. Math.459(1995), 119—150 [1319519].
N. Hitchin, Harmonic maps from a 2-torus to the 3-sphere, J. Differential Geom.31(1990), no. 3, 627—710 [1053342].
M. Kilian and M. Schmidt, On the moduli of constant mean curvature cylinders of finite type in the 3-sphere, arXiv:0712:0108v2(2008)link.
M. Kilian and M. Schmidt, On the moduli of constant mean curvature cylinders of finite type in the 3-sphere, arXiv:0712:0108v2(2008)link.